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The by-pass mechanism of transition for a wall-bounded shear layer is explained for the case
when an infinite row of convecting vortices migrate over a boundary layer at a specific speed
range. Such a mechanism is important for noisy flows over bluff bodies, flows inside turbo-
machinery and flows over helicopter rotor blades. By solving the Navier-Stokes equation, it is
shown that this by-pass transition is a consequence of vortices migrating at convection speeds
that are significantly lower than the free-stream speed. This situation is commonly found in
flows that are affected by the presence of periodic wakes. Whenever the speed of migrating
vortices is in a certain critical range, there is a local instability of the underlying shear layer with
a very high-growth rate as compared to the growth of pure Tollmien-Schlichting waves created
by wall excitation. The above interpretation is supported by solving the linearized and full
Navier-Stokes equation for disturbance quantities under the parallel flow approximation in
two dimensions. Various ramifications of such a by-pass route of transition are discussed in this
paper. © 2002 Academic Press

1. INTRODUCTION

THE sTUDY OF TRANSITION due to convecting disturbances outside a shear layer is very
important in understanding the effects of free-stream turbulence in triggering transition in
shear layers over bluff bodies. It is also very important for flows in turbomachinery and
rotor wing aerodynamics, where unsteady wakes from the previous stages (blades) affect the
flow over the downstream stages (blades) in triggering violent transition. Above all, such
a basic mechanism of transition provides an important insight into vorticity dynamics of
unsteady aerodynamics.

It is well established that weak convecting vortices mutually interact with each other via
Biot-Savart interactions and travel with free-stream speed. For such a disturbance field,
Sengupta et al. (1999) showed that the response field in a boundary layer consists of a highly
damped solution beneath each vortex. However, as time progresses, this solution disperses
and creates response at smaller scales. This is the key to the length-scale conversion
mechanism for subsequent formation of Tollmien—Schlichting (TS) waves downstream.

However, in turbomachinery, or in flows over helicopter rotor blades, it is seen that the
flow in subsequent stages or blades is strongly affected by vortices that propagate at a speed
lower than the free stream. For example, the experimental data and their correlation in
Schlichting (1979) reveals that the far wake of a single bluff body convects at 14% of the
free-stream speed. This convection speed is expected to be different in the near wake and
when multiple vortices are present.
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A zero pressure gradient two-dimensional boundary layer, excited by a localized, moder-
ate frequency disturbance source inside the shear layer, displays short wavelength TS waves
(Schubauer & Skramstad 1947). Gaster (1965) formulated this as a receptivity problem, with
the excitation source strictly located at the wall. The corresponding full time-dependent
problem was solved in Sengupta et al. (1994). The receptivity of this excitation is direct,
because for a given value of the circular frequency, the wavenumber eigenvalue fixes the
space dependence. The eigenvalues in the vicinity of the origin of the wavenumber plane
constitute the asymptotic solution of the linearized Navier-Stokes equation. Apart from
this asymptotic component, there is also the local solution, as discussed in Sengupta et al.
(1994).

The receptivity to disturbances outside the shear layer is not well understood as com-
pared to disturbances inside the shear layer. The state of the art is best revealed from the
question raised in Wu et al. (1999) in this context: do perturbations in the boundary layer
emanate from an upstream edge or inlet and grow within the boundary layer, or are internal
disturbances induced directly by external disturbances that move above the layer? Wu et al.
(1999) have performed the DNS of a spatially developing shear layer over a flat plate
subjected to disturbances imposed by wakes entering the computational domain period-
ically. As the impinging wakes are released just outside the shear layer with a downward
component of velocity, the associated vortices eventually enter the shear layer. This exercise
was undertaken to explain the experimental results of Liu & Rodi (1991), where flow
transition in turbomachines was modeled by rotating a cylinder in a circular trajectory
ahead of a flat plate. The cylinder wake thus passed periodically over the flat-plate shear
layer. The major findings in Wu et al. (1999) include the appearance of longitudinal puffs
during an initial receptivity stage, selective intensification of the puffs by a localized instability
and the generated turbulent spots having the vague appearance of an arrowhead pointing
upstream. In the present research, the complementary problem of receptivity of a shear layer
to disturbances that always remain outside the shear layer is investigated. Since the vortices
are positioned far from the wall, the imposed disturbances are expected to be small.
Therefore, an analysis based on the solution of linearized Navier-Stokes equation is
investigated first for a parallel shear layer. To account for the growth of the shear layer, the
full Navier-Stokes equation for disturbance quantities is also solved. Hunt & Durbin (1999)
have discussed this as a perturbation problem, where one vortical layer interacts with
another vortical layer. However, this is not treated as a problem of flow instability. Hunt
& Durbin (1999) have presented some results when the interaction is weaker and the layers
are sheltered from each other by large normal distances.

In Sengupta et al. (1997) and Sengupta & Nair (1997), the stability and receptivity aspect
of free-stream excitation was considered from first principles. The existence of eigenvalues in
the left-half of the wavenumber plane was established for the first time for a zero pressure
gradient boundary layer, and the physical implications with respect to free-stream excita-
tion were discussed. It was reported that these eigenvalues on the left-half plane can support
free-stream excitation and they travel upstream with respect to the disturbance sources. In
Sengupta et al. (1997), the upstream and downstream propagating disturbances were
distinguished by their group velocity. Other properties of the upstream propagating modes
revealed that these are highly stable for a zero pressure gradient boundary layer and do not
lead to transition by their growth via a linear mechanism. The reason that these upstream
propagating modes remained undetected is due to the fact that in traditional stability
analyses, one tracks eigensolutions that satisfy homogeneous boundary conditions. In the
general context of receptivity, inhomogeneous boundary conditions are natural and they
lead to the discovery of a new class of waves for free-stream excitation (Sengupta & Nair
1997). It is to be emphasized that although these modes are upstream propagating with
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respect to the source of disturbances in the free stream, in the laboratory frame, the
disturbances would still propagate downstream for the parameters of the present exercise
and those used in Wu et al. (1999). For the free-stream turbulence problem, Lieb et al. (1999)
solved the linearized unsteady boundary layer equations, and reported finding the
Klebanoff mode. However, Lieb et al. (1999) noted that the solution amplitudes do not
reach the levels found in the experiments. It is not immediately apparent in view of the
presence of upstream propagating modes, as to how an elliptic problem can be formulated
as a parabolic problem.

Wu (1999) discusses the main issue in a free-stream acoustic excitation problem as one of
deciphering the mechanism by which long-wavelength external disturbances become inter-
nalized as short-wavelength TS waves. In applying the triple deck theory to explain this
scale conversion, one requires either some form of surface inhomogeneity or mean flow
distortion (Lieb et al. 1999). However, Kendall (1990), through his experiments on jet-
induced free-stream turbulence, has provided direct evidence of TS waves and wave packets
on a nominally flat-plate boundary layer.

In this paper, the excitation of a flat-plate shear layer by convective vortical disturbance
sources outside the shear layer is investigated, and a new linear instability mechanism
identified. It is shown that the instability and its spectacular growth are directly related to
vorticity dynamics. The organization of the paper is as follows. In the next section, the
problem is formulated. This is followed by a brief discussion on the numerical method used
in obtaining the primary and disturbance flow field in Section 3. In Section 4, the results are
presented and discussed. Finally, in Section 5, we provide concluding remarks.

2. FORMULATION

The sketch of the problem under consideration is shown in Figure 1. An infinite array of
vortices convect at a constant height Y over the flat plate and the separation distance
between vortices is a. The vortices do not disperse and interact with each other as they move
downstream. If these vortices convect with a constant speed, ¢, then the presence of the wall
gives rise to the image vortex system depicted in the figure. The induced velocity compo-
nents due to the total vortex system at an arbitrary point (x, y) is given by

Uy = T sinh <27T—Y> {sin2 <n'_>€> cosh <@> — sinh <E (y — Y)> sinh <E (v + Y))},
2aD a a a a a

(1a)

r 2nY 2nx 2
v, =—— sinh <_n > sin <_nx> sinh <_7ry>’ (1b)
4aD a a a

D= {sin2 (ni) cosh <27ry> — sinh (n (y — Y)) sinh <n (v + Y))}2
a a a a
+ {1 sin <_2m€> sinh _2ny}2
2 a a

and X = x — ct.
The receptivity to this disturbance field is calculated. The u,, and v, velocity components
are plotted in Figure 2(a, b) over a single vortex spacing.

where
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Figure 1. The physical arrangement for the convecting vortices problem.

010 : : . 004
0:08 Forrerevereroni O b
: : 0-02
0-06 oo s
: 4 0F
0-04 [ormeeosssersd e oo
; = : -0-02
I T s S
0 - i : ~0:04 i !
-200  -100 0 100 200 =200  -100 0 100 200
x X

Figure 2. The imposed velocity disturbance at the free-stream boundary by the periodic train of vortices
travelling at free-stream speed. The disturbance velocity components are shown for one period only for Y = 186%;
a = 100n0* and calculated at y = 165*.

For the evaluation of the linearized response, the disturbance field is represented by the
disturbance stream function,

1 .
Y(x,y,t) = Py J D(y, o, o) el ool dy 2)
Br

where Br is the appropriate Bromwich contour in its strip of absolute convergence
(Sengupta et al. 1994). To fix the Bromwich contour, the group velocity of each eigenvalue is
needed. The Bromwich contour is drawn in such a way that the downstream- and upstream-
mode eigenvalues reside on either side of the contour. While this is the general principle for
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fixing the Bromwich contour, it is a difficult undertaking because in a general excitation
problem, one does not know a priori the number and location of all the eigenvalues. What is
hoped is that the most significant eigenvalues are located and the corresponding contour is
indented around these, to retain the overall correct direction of propagation of distur-
bances. In the present case, this effort is reduced because the Navier-Stokes simulation in
the physical plane provides guidance in choosing the contour. The response given by
equation (2) corresponds to the signal problem. The response of the system is at the same
imposed time scale, represented by w,, which in turn is fixed by the spacing a and the phase
speed c. Corresponding to the above disturbance stream-function, the disturbance velocity
components are given by

1 .
u(x, y, t) = I J D (y; o, o) ¥~ da, (3a)
Br
1 .
v(x, y, t) = — 3 f D (y; o, o) — ioe' @~ @) do, (3b)
Br

In the following, a prime will be used to indicate differentiation with respect to y.

The bilateral Laplace transform, @, in equation (2) is governed by the Orr-Sommerfeld
equation, which is the spectral representation of the linearized Navier—Stokes equation
under the parallel flow approximation given by

DV — 202" + ot @ = iRe{(wU — wo) (P" — o* ) — aU"®}. 4)

The parallel mean flow U(y) defines the shear layer whose displacement thickness 6* is
used to define the Reynolds number. As already noted, the prime denotes a derivative with
respect to y. Equation (4) has four fundamental solutions, i.e.

D =a,p; + ard, + azdz + asds. (4a)

These four independent fundamental solutions can be selected with the following free-
stream behaviour: as y — oo in the free stream:

i =" Pap =€ d3o =" ¢y, =" (4b)

where p = \/ a? 4+ i%e(o — w,). The additional subscript ‘oo’ in equation (4b) denotes
that they are evaluated at the free stream. Now, if the real part of « and p are positive,
then the first and third fundamental solutions decay with y and would be used to solve
the wall- excitation problem. So, the combination of these two modes will be referred to
as the wall- mode (&;). Similarly, the second and fourth fundamental solutions increase
with y and should be retained for finite disturbances at the free stream. Hence, a combina-
tion of these two modes will be referred to as the free-stream mode (®;;) in future
discussions.

Since one has to solve equation (4) for the bilateral Laplace transform, the boundary
conditions at the free stream given by equations (1) are transformed to their spectral
representations, @, and ®,. As the free-stream excitation is an even function for the
streamwise component, the imaginary part of @, is identically zero. Also, as the wall
normal component of the excitation velocity is an odd function, the imaginary
part of @, will be identically zero. The nonzero values of @, and @', are shown in Figure 3.
The calculations shown here are for a = 100n6* and Y = 186*. The other boundary
conditions required to solve equation (4) are the homogeneous boundary conditions at
the wall.
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Figure 3. The bilateral Laplace transform of imposed velocity disturbance components shown in Figure 2.

3. NUMERICAL METHOD

To solve the Orr-Sommerfeld equation, one requires information on the mean flow. For
a zero pressure gradient boundary layer, this is a similar profile given by the solution of the
Blasius equation. Both the Blasius equation and the Orr-Sommerfeld equation are solved
by a global finite-difference based generalized differential quadrature (GDQ) given by Shu
& Chew (1998). By collocating the equations at the zeros of the Chebyshev polynomial,
a method equivalent to the customary Chebyshev collocation is obtained. The Orr-Som-
merfeld equation constitutes a boundary value problem and requires inversion of the
coefficient matrix. We have used the Gauss method for this purpose.

For the vortex spacing of a = 100%d*, the fundamental wavenumber () is equal to 0-02.
As the fluid-dynamical system is subjected to an excitation that is periodic in space with the
fundamental wavenumber as given above, the linear response of the system consists of all
possible harmonics of this fundamental. In the physical plane, one would therefore observe
response fields as packets whose size is given by the above fundamental wavenumber, and
any instability will be associated with its higher harmonics. For a zero pressure gradient
boundary layer, the shear layer is stable linearly for the above fundamental wavenumber.
Thus, the packets will not grow via linear instability as they propagate downstream, while
the disturbance can grow inside individual packets as it propagates downstream, corres-
ponding to the linear instability of higher harmonics. This is precisely what Kendall (1990)
had observed in his experiments, namely the simultaneous presence of wave packets with TS
waves embedded in them.

Two aspects of this problem need to be emphasized. Firstly, the excitation is not
monochromatic but covers a band of frequencies. This is the fundamental difference
between free-stream excitation by convecting vortices and the vibrating-ribbon excitation
at a fixed frequency of Schubauer & Skramstad (1947). If nonlinearity is important and one
solves the full Navier-Stokes equation for the disturbance quantities, then the wave packets
can grow as they propagate downstream, while the growing disturbance inside the packet
can saturate in amplitude. Therefore, the solution of the Navier-Stokes equation will
provide vital information about the role of nonlinearity for the problem considered. Direct
simulation by the Navier-Stokes equations is also carried out.

The Navier-Stokes equation in the present study for perturbation quantities in the
standard stream-function vorticity formulation are given below by

5w+6( N N )+6( N N | 1 62w+62w 5)
— — uw Uy uw — v Up(D V) = — | —~ —_—
ot | ox b Yoy b YT Re \ox? T a2 )
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where u,, v, and w,, are the undisturbed base flow solution for the flat-plate boundary layer
flow as given by the Blasius similarity solution. Re; is the Reynolds number based on the
free-stream velocity, the displacement thickness at the in-flow and the kinematic viscosity.
To resolve the flow gradient near the wall, the above equation is solved in a stretched
coordinate system via the transformation

x=¢&  y=ym). (7)

In solving the equation in the transformed plane (&, ), the following stretching function is
used in the direction normal to the wall:

_ YVmax 0N
Nmax0 + ymax(nmax - ’7)

y(n) ; @)
where Y., 18 the height of the domain in the physical plane and 7, is the corresponding
height in the computational plane; ¢ is a constant that can be adjusted to cluster the points
near the wall.

At the in-flow boundary and on top of the computational domain, the analytical solution
for the disturbance velocity is calculated in accordance with equation (1a, b). On the flat
plate, the no-slip condition simultaneously provides a Dirichlet boundary condition for the
stream function and the wall vorticity at every instant.

In order to eliminate the reflection of waves from the out-flow boundary, the buffer
domain technique, as developed by Liu & Liu (1984), is used. The buffer domain is a narrow
strip of the computational domain adjacent to the out-flow boundary. A continuous buffer
function b(¢) is introduced; which has a value of 1-0 in the main computational domain, but
which decreases monotonically in the buffer domain from 1-0 to 0-0 at the out-flow
boundary. To treat growing or unstable modes, a second buffer function bg.(¢) is used to
gradually reduce the Reynolds number in the buffer domain to a value below the critical
Reynolds number.

Thus, the transformed governing equations in the computational (¢, n) plane are

o, 0 (o + upw + uw,) + Lo (Vo + vy0 + vey)
— + — (uw + uyw + uw — — (v + vy + v
ot 0 b Yy, on b b
bre [ 0?00 0*w 1 0w
= b—+—5— — 9
Rel< 02 + on* y; + iy on)’ ©)
oty oty 1 oY
— t+=—5— ,— = . 1

The buffer function of Liu & Liu (1984) is adopted here. At the outflow of buffer domain, the
traditional method of extrapolation based on 0%/0&* = 0%w/0E* = 0 is applied to i and w.

4. RESULTS AND DISCUSSION

We begin by considering the solutions of the linearized Navier-Stokes equation for a locally
parallel boundary layer. For this purpose, the Orr—-Sommerfeld equation given by equation
(4) is solved at 4096 equally spaced values of wavenumber along the real a-axis between
— Omax tO0 + omax Which constitutes the Bromwich contour. The case being considered has
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Figure 4. The perspective plot of @, in the y versus o plane for the case of Figure 2, for a parallel boundary layer
with Re = 1000 based on displacement thickness.

Re = 1000 and phase speed ¢ = U,; and the solution of the Orr-Sommerfeld equation
utilizes 55 Chebyshev collocation points in the y-direction. For the chosen parameters, the
evolving wave is found to be heavily damped. This suggests that the eigenvalues of all the
contributing modes possess negative imaginary part. This allows us to choose the Brom-
wich contour along the real x-axis. A value of «,,,, = 12:86 is used for the computations.

For the pure convection case, i.e. when ¢ = U,,, the excited modes are those for which the
following dispersion relation must be satisfied:

o, = nwy, (11)

where w, is the fundamental circular frequency. Figure 4 shows the perspective plot of
&, over the (2, y) plane. Since the constituent modes are periodic in space (x — direction)
and time, we may take the origin x = 0 to correspond to the instantaneous location of the
perturbing vortex. In Figure 4, one cannot detect any peaks corresponding to either
upstream or downstream propagating modes of the fundamental and higher harmonics.

Figure 5 shows the disturbance stream function as a function of x at the heights
y = 0-06086* and 2-105656*. The response is severely damped at both heights, with mono-
tonic decay in both downstream and upstream directions. This type of nonoscillatory
response without any wavy component has been termed as the local solution in Sengupta
et al. (1994).

The cause for the severely damped solution may be found in Figure 6, where the neutral
curve is shown along with the ¢ = constant loci in the (Re-w,) plane. The very existence of
the ¢ = U,, line, far removed from the neutral curve, implies that such a convecting mode
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Figure 5. Disturbance stream function plotted against stream-wise distance at the indicated nondimensional
heights for the case of Figure 4.

would decay very rapidly. Similarly, the upstream-propagating modes corresponding to
wo = 0-02 are also highly damped. The unequal damping rates of the upstream and
downstream propagating modes account for the asymmetry of the solution about x = 0 in
Figure 5. Figure 6 also indicates the possibility by which wavy or oscillatory disturbances
can be generated. Of particular significance are the properties of the upstream and
downstream modes with ¢ < U,. The real phase speed ¢, indicates the speed at which
a free-stream disturbance would convect, and for a vortex train that does not disperse, this
would be the speed of individual vortices. Figure 6 also clearly indicates that instability can
be triggered if the convection speed of the vortices lies within the narrow range of 0-26U, to
0-32U,,. Convecting free-stream disturbances within this speed range are likely to trigger
strong sustained instability, because of the high amplification rate that such modes would
experience. Also, for ¢ > 0-4U,, the convecting disturbances would create damped wave
packets.

For such a disturbance field, the growth process is also qualitatively different as com-
pared to the growth of disturbances that are created inside the shear layer—as done in say
Schubauer & Skramstad (1947). For monochromatic wall excitation, the real frequency of
the disturbance field is held fixed and the phase speed adjusts itself continuously to the local
stability property of the shear layer. Contrarily, for the disturbance field generated by
convecting vortices, it is the phase speed that is an invariant of the response field; while the
corresponding real frequency will continuously vary, satisfying the dispersion relation given
by equation (11). For free-stream excitation, the disturbance will follow a path of constant
phase speed, while for localized wall excitation, this path will be along a straight line in the
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Figure 6. Stability diagram for a flat plate boundary layer showing the neutral curve superposed over
¢ = constant disturbance propagation contours shown by thin lines. Note that the line ¢ = 1 corresponds to the
case of pure convection shown in Figures 4 and 5.

(Re — wy) plane with a slope that denotes the physical frequency. Hence, if the convection
speed of the vortex train is chosen to be between 0-26U,, and 0-32U,,, then the created
disturbance field inside the shear layer will suffer a sustained growth. Moreover, the rate of
growth will be much higher than that for disturbances that are excited from inside the shear
layer.

If one excites the shear layer by free-stream disturbances at y = Y, given by @, and &,
then it can be shown that to maintain homogeneous boundary conditions at the wall, the
wall-mode should satisfy the following boundary condition for the ¢ = U,, case:

@pc = Dy(y =0, 0, ) = eiay{[q’oc(l + oY) = P ]P0 + [P — 2P ] Pao),  (12)
where the quantities with the additional subscript ‘0’ on the right-hand side are the
fundamental solutions as evaluated at the wall. However, when the vortices move at a speed
other than the free-stream speed, the corresponding wall-mode boundary condition at the
wall is given by

Ppp = Dr(y =0, a, o)

={e™[— pPo, + P, ] 020 — € [P, — 2P Pao}/(p — ). (13)
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Figure 7. The perspective plot of @, in the y versus o plane for the case when vortices in the freestream travel at
a speed equal to 0-3U,.

The above equations represent the equivalent wall-mode amplitudes calculated at the
wall. Hence, the real parts of o« and p are positive and |p| > |«|. Also note that, for vortical
free-stream disturbances, @, > @, and then

Pre _ _ (p—a) {%O[(pw(l + Yo) — YO, ] + Paol P — o@oo]}
Pic (P — pP) P20

In the denominator, the term that is multiplied by e 7" is neglected as compared to the
retained term. This can be further simplified to

¢_=<¢_> {H Ya_yq’_%o}.
Dpc P20 D,

Hence, it becomes apparent that, for the same level of excitation at the free stream, the
above ratio indicates that whether or not the TS waves are excited by free-stream vortical
disturbances is determined by the height Y of the vortices over the shear layer.

Next, we consider the excitation of the parallel boundary layer by free-stream vortices
convecting at ¢ = 0-3U,, with Re = 1000. In Figure 7, @, is shown as a function of & and y. It
is obtained by solving the Orr-Sommerfeld equation with a suitably altered dispersion
relation for the free-stream disturbances. Once again, the figure is symmetric about o;-axis.
The figure clearly indicates the presence of two symmetric depressions on either side of
the origin that lead to propagating disturbances within each packet. In the present exercise,
the choice of Reynolds number and phase speed of the convecting vortices is such that the
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Figure 8. Disturbance stream function in the x versus y plane for the case of Figure 7.

downstream mode is lightly damped. For the choice of the Bromwich contour along the real
wavenumber axis, the use of FFT is straightforward and the perturbation stream function is
shown in the perspective plot in Figure 8 over the whole range of x and part of the range
of y.

The result shown in Figure 8 corresponds to a parallel boundary layer. To account for
the growth of the shear layer and for any nonlinearity, the Navier-Stokes equation for
two-dimensional flow in the stream-function vorticity formulation is solved next. A
second-order version of the GDQ procedure is used. As noted from the solution of the
Orr-Sommerfeld equation in Figures 8, the parallel boundary layer exhibits damped wavy
solution for ¢ = 0-3U,, and Re = 1000. However, owing to the growth of shear layer for the
Navier-Stokes solution and consequent increase in the Reynolds number, the disturbances
downstream can become unstable-as can be seen from Figure 6. In Figure 9, the solution of
the Navier-Stokes equation for ¢ = U,, case is shown, and one notices only the local
solution at early time. This solution disperses as time progresses while the amplitude of the
disturbances decays. This dispersion of the solution is governed by the upstream propagat-
ing modes as reported in Sengupta et al. (1999).

Next, the case for ¢ = 0-3U,, was investigated by solving the Navier-Stokes equation.
One would expect to see a rapid growth of disturbances based on the preceding analysis of
Figure 6. For the two-dimensional Navier-Stokes equation, the shear layer grows with
downstream distance and the Reynolds number changes from Re = 165-1900 for the
chosen computational domain. The results showing the streamwise component of the
disturbance velocity are given in Figure 10(a) and 10(b) for y = 0-36* and 1-56%, respective-
ly. While the present results are for two-dimensional flow, similar computations have been
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Figure 9. Streamwise disturbance velocity component evaluated at y = 0-36* for the indicated times by
solving Navier-Stokes equation for disturbance quantities for the excitation field as shown in Figure 2. The
x-axis corresponds to the Reynolds number based on local 6* corresponding to zero pressure gradient similarity

profile.

performed for 3-D flows by Wu et al. (1999) for free-stream vortices that were directed
towards the plate by the imposition of a constant downward velocity at the inflow. The
resultant trajectory of the vortex-induced disturbance is intuitively expected to lie in the
southeast direction if the mean flow is from west to east. However, the induced disturbance
field moved in the southwest direction instead, clearly indicating that the free-stream
excitation causes a disturbance field that propagates upstream, as predicted by Sengupta
et al. (1999). Wu et al. (1999) have also noted the existence of such local instability from their
DNS. The existence of common features among the results from the 3-D DNS, 2-D DNS
and solution of linearized Navier-Stokes problem is not accidental and points to the
existence of a common mechanism that is seen in all the three.

While writing the final version of the paper, our attention has been drawn to experi-
mental work performed by Kendall (1987) that was similar to the experiment performed by
Liu & Rodi (1991) later. Unlike Liu & Rodi (1991), in Kendall (1987), the cylinder rotated in
a circular trajectory above the plate, and the resultant excitation is in a sense qualitatively
similar to the present investigations. In the experiment of Kendall (1987), the strength,
location and migration speed of the vortices are, however, not controlled. But the results,
indicated in figure 3 of that paper, clearly showed that a rotation speed that corresponded
to ¢ = 0-3U,, showed maximum receptivity, as compared to ¢ = 0-23U,, and 0.5U,,. Also,
the hot-wire oscillograms corresponding to the circumferential speed of 0.3U,, of the rotor
indicated the presence of large amplitude wave packets.
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Figure 10. (a). Streamwise disturbance velocity component evaluated at y = 0-36* for the indicated times for
¢ =0-3U,, obtained from disturbance Navier-Stokes equation. (b). Streamwise disturbance velocity component at
y = 1:56* for the case of ¢ = 0-3U,, at indicated times, obtained as solution of the Navier-Stokes equation for

perturbation quantities.
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5. CONCLUDING REMARKS

The present study clearly shows that free-stream vortical excitation can give rise not only to
short wavelength downstream-propagating disturbances inside the shear layer and up-
stream-propagating disturbances postulated in Sengupta et al. (1999), but also initiate very
large disturbance growth within the shear layer if the propagating free-stream disturbances
travel at a constant speed range that is much below the free-stream speed. The most effective
speed range is seen to be between 026U, and 0-32U,. Furthermore, such disturbance
growth can be spectacularly larger than the wall-excitation case because the constant-c
disturbances are able to track the most unstable local modes of the shear layer in
a sustained manner. We believe that this is the by-pass transition mechanism for periodic
free-stream perturbation, as in turbomachinery—although the term may have been used in
different contexts by other researchers. This study also indicates that the by-pass route of
transition is potentially more severe as compared to wall excitation.
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